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A flooded ship can exhibit undesirable non-linear roll motion even in waves of
moderate amplitude. In order to understand the mechanism of this non-linear
phenomenon, the non-linearly coupled dynamics of a ship and flood water are
considered using a mathematical model for the simplified motion of a flooded ship
in regular beam waves. This paper describes bifurcation and resonance of this
coupled system. A bifurcation diagram shows that large-amplitude subharmonic
motion exists in a wide range of parameters, and that the Hopf bifurcation is
observed due to the dynamic effects of flood water. Resonance frequencies can be
determined by linearization of this model. Comparison between the resonance
points and the bifurcation curves suggests that non-linear resonances of this model
can bring about large-amplitude subharmonic motion, even if it is in the
non-resonant state of the linearized system.
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1. INTRODUCTION

The non-linear motion of a ship in waves may lead to a serious accident such as
capsizing. For example, in 1994 the ferry Estonia capsized quickly after a large
amount of sea water flooded into the vehicle-deck with a wide open area reserved
for the transportation of vehicles. Although the possibility of the vehicle-deck
flooding was recognised, existing safety standards, based mainly on static stability,
were met. Following this accident, experimental investigations suggested that the
ship’s non-linear response to waves, including complicated bifurcation
phenomena, may have indeed been related to the sinking of the Estonia [1, 2]. For
this reason, the authors feel that dynamic stability should be studied further to
avoid such disasters in the future.
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Non-linear ship motion in waves has been considered from the viewpoint of
non-linear dynamics using a mathematical model for roll motion of a ship in waves
[3–9]. Virgin [3] claimed that prediction of chaotic roll motion may be a useful
indicator of imminent capsizing. Nayfeh et al. [7] and Thompson and de Souza
[8] examined non-linear coupling of roll and the other modes. Falzarno et al. [9]
studied static effects of flood water on roll motion in waves. Our previous
experimental work [1] demonstrated that the non-linearly coupled dynamics of the
ship and flood water was the key to understanding the complicated non-linear
response of a flooded ship in waves. After this experimental determination, a
mathematical model was derived for the coupled motion in waves [2].

The main objectives of the present paper are to analyse the bifurcations of the
non-linearly coupled system of roll and flood water using the mathematical model
derived in reference [2], and to examine the mechanism of the complicated
non-linear response. Section 2 describes modelling of this coupled motion and
summarizes some characteristics of the model. Section 3 shows numerical
examples of bifurcation sets. This model can be regarded as a coupled oscillatory
system which has three representative frequencies, namely a wave frequency, a
natural frequency of roll motion of a ship, and a natural frequency of oscillatory
motion of flood water. From these, resonance frequencies of the system can be
determined. Section 4 discusses the relation between the bifurcation phenomena
and non-linear resonances.

2. A MATHEMATICAL MODEL FOR MOTION OF A FLOODED SHIP IN WAVES

2.1.           

Previous experimental work [1] demonstrated that the coupled motion of roll
and flooded water was dominant in this problem. The simplified motion of a
flooded box-shaped ship in a vertical cross-section in the direction of progress of
waves is considered, as shown in Figure 1, assuming that: (a) coupling of roll

Figure 1. Illustration of the simplified motion of a flooded ship in waves. f: roll angle of a ship,
x: slope of the surface of flood water, bs : breadth of a ship, bw : breadth of an inside area of a ship,
ds : draft, fr : freeboard, dw : depth of flood water, Gs : center of gravity of a ship, Gw : center of gravity
of flood water, and Bs : center of buoyancy of a ship.
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motion and flood water is dominant, and sway and heave modes can be neglected;
(b) the surface of the flood water is flat with the slope x; (c) the motion of the
flood water can be approximated by that of a material particle located at the center
of gravity Gw ; (d) the wave forcing moment varies sinusoidally with the same
angular frequency V as the incident waves; and (e) the damping moments on the
ship and flood water vary linearly with f� and ẋ ( � =d/dt), respectively. In
Figure 1, x and y denote the horizontal and vertical co-ordinates, respectively, with
the origin set at the center of gravity of the ship Gs .

Based on the above assumptions, the kinetic energy K, the potential energy P,
and the rate of energy dissipation D can be expressed as

Ks = 1
2(I+ dI)f� 2 = 1

2Mk2f� 2,

Kw = 1
2m(ẋ2

Gw
+ ẏ2

Gw
),

Ps =−rVgyBs =−(M+m)gyBs ,

Pw =mgyGw ,

Pf =−f{A0 +A1 sin (Vt+c)},

D= 1
2nsf� 2 + 1

2nwẋ
2, (1)

where the subscripts s, w, and f denote the ship, the flood water, and the wave
forcing moment, I and dI the moment and the added moment of inertia about the
axis of roll, M and m the masses of the ship and of the flood water, k the radius
of gyration, g the gravitational acceleration, xGw =(xGw , yGw ) the location of the
center of gravity of the flood water Gw , xBs =(xBs , yBs ) the location of the center
of buoyancy Bs of the ship, A0 +A1 sin (Vt+c) the wave forcing moment, and
n the damping coefficient, respectively. We can obtain a mathematical model for
the coupled motion by substituting K, P, and D into Lagrange’s equations of
motion as follows:

d
dt 01L

1f� 1−
1L
1f

+
1D
1f�

=0,
d
dt 01L

1ẋ1−
1L
1x

+
1D
1ẋ

=0, (2)

where the Lagrangian L=K−P, K=Ks +Kw , and P=Ps +Pw +Pf . For the
sake of convenience, xBs and xGw are expressed as

xBs =0xB (f)
yB (f)1,

xGw =0xG (f, x)
yG (f, x)1

=0 cos f,
−sin f,

sin f

cos f10jG (x)
hG (x)1, (3)
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and the kinetic energy of flood water Kw as

Kw = 1
2m(q1(x)f� 2 +2q2(x)f� ẋ+ q3(x)ẋ2), (4)

where

q1(x)= j2
G + h2

G,

q2(x)=
1jG

1x
· hG − jG ·

1hG

1x
,

q3(x)=01jG

1x 1
2

+01hG

1x 1
2

. (5)

Normalizing each mass and length by M and k, respectively, one can write the
equations of motion in the form

Mu� +Nu� + h+ r= f, (6)

with

u=(f, x)T,

M=01+ rq̃1,
rq̃2,

rq̃2

rq̃31,
N=0ñs ,

0,
0
ñw1,

h=

r01q̃1

1x
f� ẋ+

1q̃2

1x
ẋ21

1
2r0−1q̃1

1x
f� 2 +

1q̃3

1x
ẋ21

,G
G

G

G

G

F

f

G
G

G

G

G

J

j

r=(r1, r2)T,

r1 =−(1+ r)s2 1ỹB

1f
− rs2(j	 G cos f+ h̃G sin f),

g
G

G

F

f
r2 = rs20−1j	 G

1x
sin f+

1h̃G

1x
cos f1,

f=0A	 0 +A	 1 sin (Vt+c)
0 1, (7)

where T denotes the transpose, r=m/M, s=zg/k , q̃1,2,3 = q1,2,3/k2, j	 G = jG /k,
h̃G = hG /k, ñs,w = ns,w /(Mk2), and A	 0,1 =A0,1/(Mk2), respectively. Hereafter this form
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is used with the tilde omitted. Note that the time t is not normalized. Equation
(6) can be rewritten in the form

du
dt

=F(t, u), (8)

where u=(f, x, f� , ẋ)T and

F=0 u�
M−1(−Nu� − h− r+ f)1. (9)

2.2.      

Based on the above assumptions, xBs corresponds to the center of the
cross-section of the ship under the still water surface, and, similarly, xGw the center
of the cross-section of flood water. Each sectional shape changes from a trapezoid
to a triangle at f=f*= tan−1 2ds /bs and x= x*= tan−1 2dw /bw , respectively, as
shown in Figure 2. The co-ordinates yB (f), jG (x), and hG (x) in equation (7) are
shown in Appendix A. Then, the vector F in equation (8) is continuous with respect
to f and x, but the Jacobian matrix 1F/1u is discontinuous at f=f* and x= x*.

The forcing term is expressed as the sum of the constant heel moment A0 and
the periodically fluctuating one A1 sin (Vt+c). Only when A0 =0, this model has
a symmetrical property as follows:

F0t+ p

V
, Lu1=LF(t, u) when A0 =0, (10)

Figure 2. Variation of sectional shapes with f and x. Shaded regions show the cross-sections of
(a) the ship under the still water level and (b) flood water. f*= tan−1 2ds /bs ; x*= tan−12dw /bw .
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where

−1 0 0 0

0 −1 0 0
G
G

G

F

f

G
G

G

J

j

L=
0 0 −1 0

. (11)

0 0 0 −1

In real phenomena, A0 (q0) is much smaller than A1.

3. BIFURCATION ANALYSIS

This section shows some numerical examples of bifurcation of the mathematical
model equation (6) under almost the same conditions as the experiment using a
ferry model [1]. Each parameter is set as follows: r=m/M=0·19, bs =2·689,
bw =1·936, ds =0·874, dw =0·194, ds + fr =0·958. KGs =0·915, ns =0·03,
nw =0·024, and c=0·0. Figure 3 displays phase portraits of two different periodic
solutions, one with the period 2p/V (‘‘period 1’’) and another one 4p/V (‘‘period
2’’), for V=2p/6·98, A0 =0·0, and A1 =0·02. It can be seen that large-amplitude
subharmonic motion ‘‘period 2’’ coexists with small-amplitude harmonic motion
‘‘period 1’’. This result agrees with the experimental results [1].

Next, in order to examine stability of the ‘‘period-N’’ solutions, the Poincaré
map T is defined by

T: u0� T(u0)=80t= t0 +N
2p

V
, u01, (12)

where 8(t, u0) denotes a solution of equation (8) with the initial values
u(t= t0)= u0. The ‘‘period-N’’ solutions satisfy the fixed point condition

Figure 3. Phase portraits of two different periodic solutions in (f, f� ). V=2p/6·98; A0 =0·0;
A1 =0·02. (a) Period 1; (b) period 2.
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Figure 4. Variation of the roll angle f0 at the fixed point of the two periodic solutions, ‘‘period
1’’ and ‘‘period 2’’ solutions in Figure 3, with changing A1. f0 =f(t0)=f(t0 + (2p/V)) for the
‘‘period 1’’ solutions, and f0 =f(t0)=f(t0 +2×(2p/V)) for the ‘‘period 2’’ solutions at the same
phase of the forcing term f in equation (6), namely Vt0 +c=0. Solid line: stable (=m=max Q 1); dotted
line: unstable (=m=max q 1); m: eigenvalue, IN: period doubling bifurcation; GN: saddle-node bifurcation;
HN: Hopf bifurcation; N: ‘‘period N’’.

u0 =T(u0). One can trace the fixed points with changing parameters, examine the
stability, and determine the bifurcation points of the ‘‘period-N’’ solutions by
numerically computing eigenvalues mi (i=10 4) of 1T/1u0 [10]. Note that stability
analysis requires careful treatment of the non-smoothness of this system shown
in section 2.2 [11]. Figure 4 shows the variation of the roll angle f at the fixed
point of the two periodic solutions in Figure 3 with changing A1. In this figure,
the axis of ordinate f0 denotes the roll angle f at the fixed point of the same phase
of the forcing term f in equation (6), such that f0 =f(t0)=f(t0 + (2p/V)) for the
‘‘period 1’’ solutions, and f0 =f(t0)=f(t0 +2×(2p/V)) for the ‘‘period 2’’
solutions. Note that only one point, namely f only at t= t0, is plotted for both
periodic solutions. Solid and dotted lines represent the stable and unstable periodic
solutions, respectively. It is found that these two periodic solutions coexist for
0·0126QA1 Q 0·0624. This is because at the subcritical period-doubling
bifurcation point I1 of the ‘‘period 1’’ solution, the unstable ‘‘period 2’’ solution
is generated, and at the saddle-node bifurcation point G2, the unstable ‘‘period 2’’
solution disappears by coalescence with the stable ‘‘period 2’’ solution. This
bifurcation structure enables small-amplitude ‘‘period 1’’ and large-amplitude
‘‘period 2’’ solutions to coexist, as shown in Figure 3. Furthermore, the stable
‘‘period 2’’ solution bifurcates to quasi-periodic motion at H2.

Figure 5 shows a bifurcation diagram of ‘‘period 1’’ and ‘‘period 2’’ solutions
in the parameter space (V, A1). One can see that stable subharmonic motion
‘‘period 2’’ exists for a wide range of parameters. In addition, note that the Hopf
bifurcation is observed in this diagram. This result characterizes non-linearly
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Figure 5. Bifurcation diagram in the (V, A1)-plane. The wave frequency V (rad/s) is represented
in a real time scale. Solid line (GN): Saddle-node bifurcation. Dashed line (IN): period doubling
bifurcation; dot-dashed line (HN): Hopf bifurcation; N: ‘‘period N’’.

coupled dynamics because, when a ship has no flood water, or when dynamic
effects of flood water are neglected, the Hopf bifurcation cannot occur in this
model, similarly to Duffing’s equation [10].

4. RESONANCE OF THE NON-LINEARLY COUPLED SYSTEM OF A SHIP AND
FLOOD WATER IN WAVES

This mathematical model is a coupled oscillatory system subjected to a periodic
forcing. Thus it may be natural to consider that non-linear resonances of this
system are related to bifurcation phenomena. In order to discuss this point,
resonance frequencies are obtained by linearizing this model, and compared with
bifurcation points of ‘‘period 1’’ solutions in Figure 5.

When a ship is flooded in still water, namely rq 0, it has two statistically
balanced positions at f=2fe (fe q 0). Here the only case considered is when the
ship is initially set at f=fe . When the wave amplitude is small, the ship rolls
around this equilibrium position with small amplitude. Then f and x can be
expressed as

f(t)=fe +f1(t),

x(t)= xe + x1(t)

=f+ x1(t)

=fe +f1(t)+ x1(t). (13)
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Here it should be noted that the equilibrium angle of x is not fe but f. In order
to linearize the model, assume the order of f1, x1, ns , nw , A0, and A1 as follows:

f1 =O(o), x1 =O(o),

ns =O(o), nw =O(o),

A0 =O(o2), A1 =O(o), (14)

where o�1. Each term in equation (6) is expanded and arranged as follows:

qi = qi0 +O(o), for i=1, 2, 3,

−
1yB

1f
= a0 + a1f1 +O(o2),

jG = b0 + b1(f1 + x1)+O(o2),

hG = g0 + g1(f1 + x1)+O(o2),

1jG

1x
= b'0 + b'1 (f1 + x1)+O(o2),

1hG

1x
= g'0 + g'1 (f1 + x1)+O(o2), (15)

where coefficients aj , bj , gj , b'j , and g'j (j=0, 1) are shown in Appendix B. Then
the 0th and the 1st order equations can be written as follows:

0th order equation: O(o0)

(1+ r)a0 − r(b0Ce + g0Se )=0. (16)

1st order equations: O(o1)

M1u� 1 +R1u1 = f1, (17)

with

u1 = (f1, x1)T,

M1 =0m11,
m21,

m12

m221,
m11 =1+ r(q1 + q2),

m12 = rq2,

g
G

G

G

G

F

f

m21 = r(q2 + q3),

m22 = rq3,
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R1 =0r11,
r21,

r12

r221,
r11 = (1+ r)s2a1 − rs2{(−b0 + g1)Se +(g0 + b1)Ce},

r12 =−rs2(b1Ce + g1Se ),
g
G

G

G

G

F

f

r21 =0,

r22 =−r12,

f1 =0A1 sin (Vt+c)
0 1, (18)

where Se =sin fe and Ce =cos fe . The equilibrium angle fe is determined by the
0th order equation (15). Natural frequencies v1 and v2 of the 1st order equations
(16) are given by

v1,2 = (s2zs2 − =M1==R1=)/=M1=, (19)

with 2s=m11r22 +m22r11 −m12r21 −m21r12. Figures 6 and 7 show variation of the
equilibrium angle fe and the natural frequencies v1 and v2 with the amount of
flood water, respectively, for the same parameter values as in section 3. In the 1st
order system, resonances occur only at V=v1 and V=v2. For higher order
systems, it should be noticed that non-linear terms in the model include
trigonometric functions which produce non-linearities to any order. Thus, this
model can exhibit subharmonic resonances at V=2v1,2, 3v1,2, . . . , superharmonic

Figure 6. Variation of the equilibrium angle fe with the ratio of the amount of flooded water to
the displacement of a ship r=m/M. The parameter values are the same as those in section 3.
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Figure 7. Variation of natural frequencies v1 and v2 with the ratio of the amount of flood water
to the displacement of a ship r=m/M. The parameter values are the same as those in section 3.

resonances at V=v1,2/2, v1,2/3, . . . , and combination resonances V= n1v1 2
n2v2 (n1,2 =1, 2, . . . ) [12]. In the case of the numerical example in section 3,
v1 =1·518 and v2 =0·550.

Figure 8 shows frequency response curves of the amplitude of (a) roll motion
and (b) oscillatory motion of flood water of ‘‘period 1’’ solutions in Figure 5. The
four curves in this figure display different frequency responses for A1 =0·002,
0·005, 0·010, and 0·022. It is found that the amplitude of periodic motions becomes
large at some resonance frequencies which are indicated by the dot-dashed line.
This figure also shows that, when A1 is small, primary resonances occur only at
V=v1 and V=v2, and that, with an increase in A1, higher order resonances
become evident. Figure 9 shows the variation of the maximum absolute value of
the eigenvalue =m=max with the wave frequency V for (a) A1 =0·002 and (b)
A1 =0·022, respectively. Solutions are stable for =m=max Q 1 and unstable for
=m=max q 1. Similarly to Figure 8, some resonance frequencies are shown by the
dot-dashed lines. In Figure 5, the period-doubling bifurcation of ‘‘period 1’’, I1,
is observed in two regions, one for VQ 1·0 and another one for Vq 1·02. The
minimum points of the amplitude A1 of these two bifurcation curves are located
at V0v1 −v2 =0·968 and V0 2v2 =1·100. Figure 9(b) shows that the ‘‘period
1’’ solutions become unstable near these two resonance frequencies. These results
indicate that higher order resonances of this coupled system are deeply related to
the complicated bifurcation structure found in Figure 5. Furthermore, comparison
between Figures 5, 8 and 9 suggests that large-amplitude ‘‘period 2’’ solutions exist
in the non-resonant state of the linearized system. Thus, these non-linear
resonances should be taken into consideration in ship design, since the existing
design rule requires stability only in the primarily resonant state in which the
natural frequency of roll motion of a ship is close to the wave frequency V.
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Figure 8. Frequency response curves of amplitude of (a) roll motion and (b) oscillatory motion
of flood water of ‘‘period 1’’ solutions in Figure 5. f: the roll angle, x: the slope of flood water.
Solid line: stable; dotted line: unstable; dot-dashed line: resonance frequencies. The frequency range
is wider than that in Figure 5.

It is well known that internal resonances occur at v1 = nv2 (n=1, 2, . . . )
[8, 12]. Thompson and de Souza [8] pointed out that this resonance can suppress
destabilization of ship motion. In the above numerical example, v1 is close to 3v2.
This point will be studied elsewhere. In addition, although resonance frequencies
can be estimated by the linearized system, further bifurcation analyses are required
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Figure 9. Variation of the maximum absolute value of the eigenvalue =m=max of ‘‘period 1’’ solutions
in Figure 5 with changing V. Dot-dashed line: resonance frequencies. The frequency range is wider
than that in Figure 5. (a) A1 =0·002; (b) A1 =0·022.

for fully understanding the complex mechanisms of non-linear phenomena,
including chaos found in experiments.

5. CONCLUSIONS

On the basis of previous experimental work, a mathematical model for the
motion of a flooded ship in waves has been analysed. This model is a coupled
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oscillatory system of a ship and flood water subjected to wave forcing. Thus, this
coupled oscillatory model has three representative frequencies, namely the wave
frequency, the natural frequency of the roll motion of the ship, and the natural
frequency of the oscillatory motion of the flood water. These frequencies and
resonance frequencies were identified by linearizing the model equations.

Bifurcation analyses of periodic solutions of this model demonstrate that
large-amplitude subharmonic motion exists for a wide range of wave frequencies
and amplitudes, and that this system can exhibit a Hopf bifurcation due to the
dynamic effects of flood water. Comparison between the bifurcation curves and
the resonance points shows that higher order resonances of this coupled system
can give rise to complicated bifurcation phenomena, even if it is in the
non-resonant state of the linear system.
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APPENDIX A: LOCATIONS OF THE CENTER OF BUOYANCY OF A SHIP AND
THE CENTER OF GRAVITY OF FLOOD WATER

The co-ordinates yB , jG , and hG in equation (7) are shown as follows:

Case 1. Sectional shapes are trapezoidal (=f=Qf*, =x=Q x*)

yB = l1Cf − 1
2l2TfSf ,

jG = l3Tx ,

hG = 1
2l3T

2
x + l4 + l5. (A1)

Case 2. Sectional shapes are triangular (=f=ef*, =x=e x*)

yB =−sgn (f) · l6Sf + l7zS2=f= − l8Cf ,

jG =sgn (x) · 0l9 − l10
Cx

zS2=x=1,
hG =sgn (x) · l10

Sx

zS2=x=

+ l4, (A2)

where l1 = (ds /2−KGs )/k, l2 =BsMs /k= b2
s /(12dsk), l3 =GwMw /k= b2

w/(12dwk),
l4 = (ds + fr −KGs )/k, l5 = dw /(2k), l6 = bs /(2k), l7 = (2/3)zbsds /k, l8 =KGs /k,
l9 = bw /(2k), l10 = (2/3)zbwdw /k, Sf =sin f, Cf =cos f, Tf =tan f,
S2=f= =sin 2=f=, Sx =sin x, Cx =cos x, Tx =tan x, S2=x= =sin 2=x=, tan f*=2ds /bs ,
and tan x*=2dw /bw , respectively.

APPENDIX B: COEFFICIENTS IN EQUATION (14)

Since small amplitude motion around the equilibrium point f=fe (q0) in the
linearized system is considered, coefficients in equation (14) for fq 0 and xq 0
are shown as follows.

Case 1. Sectional shapes are trapezoidal (0QfQf*, 0Q xQ x*)

q10 = (l4 + l5)2 + (l3 + l4 + l5)l3T2
e + 1

4l
2
3T4

e ,

q20 = l3(1+T2
e )(l4 + l5 − 1

2l10T2
e ),

q30 = l3(1+T2
e )3,

a0 = {l1 + 1
2l2(2+T2

e )}Se ,

a1 = {l1 + 1
2l2(2+T2

e )}Ce + l2Te (1+T2
e )Se ,

b0 = l3Te , b1 = l3(1+T2
e ),

b'0 = l3(1+T2
e ), b'1 =2l3Te (1+T2

e ),

g0 = l4 + l5 + 1
2l3T

2
e , g1 = l3Te (1+T2

e ),

g'0 = l3Te (1+T2
e ), g'1 = l3Te (1+T2

e )(1+3T2
e ). (B1)
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Case 2. Sectional shapes are triangular (fef*, xe x*)

q10 = l24 + l29 + l210
1
S2e

+2l100−l9Ce + l4Se

zS2e
1,

q20 = l100l4Ce − l9Se + l10zS2e

S3/2
2e 1,

q30 = l210
1
S3

2e
,

a0 = l6Ce − l8Se − l7
C2e

zS2e

,

a1 =−l6Se − l8Ce + l701+S2
2e

S3/2
2e 1,

b0 = l9 − l10
Ce

zS2e

, b1 = l10
1

2SezS2e

,

b'0 = l10
Ce

S3/2
2e

, b'1 = l10
Ce

S3/2
2e 0T2

e −3
2Te 1,

g0 = l4 + l10
Se

zS2e

, g1 = l10
1

2CezS2e

,

g'0 = l10
Se

S3/2
2e

, g'1 = l10
Se

S3/2
2e 03T2

e −1
2Te 1, (B2)

where Se =sin fe , Ce =cos fe , Te =tan fe , S2e =sin 2fe , and C2e =cos 2fe .
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